일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- Deep Dive
- 솔리디티
- 리액트
- Algorithm
- 딥다이브
- 파이썬
- 클로저
- solidity
- Queue
- Python
- 블록체인
- git pull
- 실행 컨텍스트
- react
- nft
- frontend
- Javascript
- Interview
- 알고리즘
- 자바스크립트
- Execution context
- BOJ
- blockchain
- 프로퍼티
- 백준
- 함수
- var
- let
- 변수
- 정렬
- Today
- Total
공부하자
[Deep Dive 정리] 19장. 프로토타입 - 2 본문
19.8 오버라이딩과 프로퍼티 섀도잉
const Person = (function () {
// 생성자 함수
function Person(name) {
this.name = name;
}
// 프로토타입 메서드
Person.prototype.sayHellow = function () {
console.log(`Hi! My name is ${this.name}`);
};
// 생성자 함수를 반환
return Person;
}());
const me = new Person('Lee');
//인스턴드 메서드
me.sayHello = function () {
console.log(`Hey! My name is ${this.name}`);
};
// 인스턴드 메서드가 호출된다. 프로토타입 메서드는 인스턴스 메서드에 의해 가려진다.
me.sayHello(); // Hey! My name is Lee
프로토타입이 소유한 프로퍼티(메서드 포함)를 프로토타입 프로퍼티, 인스턴스가 소유한 프로퍼티를 인스턴스 프로퍼티라고 부른다.
프로토타입 프로퍼티와 같은 이름의 프로퍼티를 인스턴스에 추가하면 프로토타입 체인을 따라 프로토타입 프로퍼티를 검색하여 프로토타입 프로퍼티를 덮어쓰는 것이 아니라 인스턴스 프로퍼티로 추가한다. 이때 인스턴스 메서드 sayHello는 프로토타입 메서드 sayHello르 오버라이딩했고 프로토타입 메서드 sayHello는 가려진다. 이처럼 상속 관계에 의해 프로퍼티가 가려지는 현상을 프로퍼티 섀도잉이라 한다.
19.9 프로토타입의 교체
[생성자 함수에 의한 프로토타입 교체]
const Person = (function () {
function Person(name) {
this.name = name;
}
// 1. 생성자 함수의 prototype 프로퍼티를 통해 프로토타입을 교체
Person.prototype = {
sayHello() {
console.log(`Hi! My name is ${this.name}`);
}
}
return Person;
}());
const me = new Person('Lee');
1번에서 Person.prototype에 객체 리터럴을 할당했다. 이는 Person 생성자 함수가 생성할 객체의 프로토타입을 객체 리터럴로 교체한 것이다.
프로토타입으로 교체한 객체 리터럴에는 constructor 프로퍼티가 없다. constructor 프로퍼티는 자바스크립트 엔진이 프로토타입을 생성할 때 암묵적으로 추가한 프로퍼티다. 따라서 me 객체의 생성자 함수를 검색 하면 Person이 아닌 Object가 나온다.
이처럼 프로토타입을 교체하면 constructor 프로퍼티와 생성자 함수 간의 연결이 파괴된다. 파괴된 constructor 프로퍼티와 생성자 함수 간의 연결을 되살려 보자.
const Person = (function() {
function Person(name) {
this.name = name;
}
// 생성자 함수의 prototype 프로퍼티를 통해 프로토타입을 교체
Person.prototype = {
// constructor 프로퍼티와 생성자 함수 간의 연결을 설정
construcotr: Person,
sayHello() {
console.log(`Hi! My name is ${this.name}`)
}
};
return Person;
}());
const me = new Person('Lee');
// constructor 프로퍼티가 생성자 함수를 가리킨다.
console.log(me.constructor === Person); // true
console.log(me.constructor === Object); // false
[인스턴스에 의한 프로토타입의 교체]
인스턴스의 `__proto__`접근자 프로퍼티(또는 Object.setPrototypeOf 메서드)를 통해 프로토타입을 교체할 수 있다.
생성자 함수의 prototype 프로퍼티에 다른 임의의 객체를 바인딩하는 것은 미래에 생성할 인스턴스의 프로토타입을 교체하는 것이다. `__proto__`접근자 프로퍼티를 통해 프로토타입을 교체하는 것은 이미 생성된 객체의 프로토타입을 교체하는 것이다.
function Person(name) {
this.name = name;
}
cosnt me = new Person('Lee');
// 프로토타입으로 교체할 객체
const Parent = {
sayHello() {
console.log(`Hi! My name is ${this.name}`);
}
};
// 1. me 객체의 프로토타입을 parent 객체로 교체한다.
Object.setPrototypeOf(me, parent);
// 위 코드는 아래의 코드와 동일하게 동작한다.
// me.__proto__ = parent;
me.sayHello(); // Hi! My name is Lee
생성자 함수에 의한 프로토타입의 교체와 인스턴스에 의한 프로토타입 교체는 별다른 차이가 없어 보이지만 미묘한 차이가 있다.
생성자 함수에 의한 프로토타입 교체는 생성자 함수의 prototype 프로퍼티가 교체된 프로토타입을 가리키지만, 인스턴스에 의한 프로토타입 교체는 생서자 함수의 prototype 프로퍼티가 교체된 프로토타입을 가리키지 않는다.
프로토타입 교체를 통해 객체 간의 상속 관계를 동적으로 변경하는 것은 꽤나 번거롭다.
따라서 프로토타입은 직접 교체하지 않는 것이 좋다.
19.10 instanceof 연산자
instanceof 연산자는 이항 연산자로서 좌변에 객체를가리키는 식별자, 우변에 생성자 함수를 가리키는 식별자를 피연산자로 받는다. 만약 우변의 피연산자가 함수가 아닌 경우 TypeError가 발생한다.
우변의 생성자 함수의 prototype에 바인딩된 객체가 좌변의 객체의 프로토타입 체인 상에 존재하면 true로 평가되고, 그렇지 않은 경우에는 false로 평가된다.
// 생성자 함수
function Person(name) {
this.name = name;
}
const me = new Person('Lee');
// 프로토타입으로 교체할 객체
const parent = {};
// 프로토타입의 교체
Object.setPrototypeOf(me, parent);
// Person 생성자 함수와 parent 객체는 연결되어 있지 않다.
console.log(Person.prototype === parent); // false
console.log(parent.prototype === Person); // false
// parent 객체를 Person 생성자 함수의 prototype 프로퍼티에 바인딩한다.
Person.prototype = parent;
// Person.prototype이 me 객체의 프로토타입 체인 상에 존재하므로 true로 평가된다.
console.log(me instanceof Person); // true
// Object.prototype이 me 객체의 프로토타입 체인 상에 존재하므로 true로 평가된다.
console.log(me instanceof Object); // true
instanceof 연산자는 프로토타입의 constructor 프로퍼티가 가리키는 생성자 함수를 찾는 것이 아니라 생성자 함수의 prototype에 바인딩된 객체가 프로토타입 체인 상에 존재하는지 확인한다.
또한 생성자 함수에 의해 프로토타입이 교체되어 constructor 프로퍼티와 생성자 함수 간의 연결이 파괴되어도 생성자 함수의 prototype 프로퍼티와 프로토타입 간의 연결은 파괴되지 않으므로 instanceof는 아무런 영향을 받지 않는다.
19.11 직접 상속
[Object.create에 의한 직접 상속]
Object.create 메서드의 첫 번째 매개변수에는 생성할 객체의 프로토타입으로 지정할 객체를 전달한다. 두 번재 매개변수에는 생성할 객체의 프로퍼티 키와 프로퍼티 디스크립터 객체로 이뤄진 객체를 전달한다.
/**
* 지정된 프로토타입 및 프로퍼티를 갖는 새로운 객체를 생성하여 반환한다.
* @param {Object} prototype - 생성할 객체의 프로토타입으로 지정할 객체
* @param {Object} [propertiesObject] - 생성할 객체의 프로퍼티를 갖는 객체
* @returns {Object} 지정된 프로토타입 및 프로퍼티를 갖는 새로운 객체
*/
Object.create(prototype[, propertiesObject])
// 프로토타입이 null인 객체를 생성한다. 생성된 객체는 프로토타입 체인의 종점에 위치한다.
// obj => null
let ob = Object.create(null);
console.log(Object.getPrototypeOf(obj) === null); // true
// Object.prototype을 상속받지 못한다.
console.log(obj.toString()); // TypeError : obj.toString is not a function
// obj => Object.prototype => null
// obj = {}; 와 동일하다
obj = Object.create(Object.prototype);
console.log(Object.getPrototypeOf(obj) === Object.prototype); // true
// obj => Object.prototype => null
// obj = { x : 1 }; 와 동일하다
obj = Object.create(Object.prototype, {
x : { value: 1, writable: true, enumerable: true, configurable: true}
});
// 위 코드는 아래와 동일하다
// obj = Object.create(Object.prototype);
// obj.x = 1;
console.log(obj.x); // 1
console.log(Object.getPrototypeOf(obj) === Object.prototype); // true
const myProto = { x : 10 };
// 임의의 객체를 직접 상속받는다.
// obj => myProto => Object.prototype => null
obj = Object.create(myProto);
console.log(obj.x); // 10
console.log(Object.getPrototypeOf(obj) === myProto); // true
// 생성자 함수
function Person(name) {
this.name = name;
}
// obj => Person.prototype => Object.prototype => null
// obj = new Person('Lee')와 동일하다.
obj = Object.create(Person.prototype);
obj.name = 'Lee';
console.log(obj.name); // Lee
console.log(Object.getPrototypeOf(obj) === Person.prototype); // true
이처럼 Object.create 메서드는 첫 번재 매개변수에 전달한 객체의 프로토타입 체인에 속하는 객체를 생성한다. 즉, 객체를 생성하면서 직접적으로 상속을 구현하는 것이다. 이 메서드의 장점은 다음과 같다.
- new 연산자가 없이도 객체를 생성할 수 있다.
- 프로토타입을 지정하면서 객체를 생성할 수 있다.
- 객체 리터럴에 의해 생성된 객체도 상속받을 수 있다.
[객체 리터럴 내부에서 __proto__에 의한 직접 상속]
Object.create 메서드에 의한 직접 상속은 여러 가지 장점이 있지만 두 번재 인자로 프로퍼티를 정의하는 것은 번거롭다.
ES6에서는 객체 리터럴 내부에서 `__proto__`접근자 프로퍼티를 사용하여 직접 상속을 구현할 수 있다.
const myProto = { x: 10 };
// 객체 리터럴에 의해 객체를 생성하면서 프로토타입을 지정하여 직접 상속받을 수 있다.
const ojb = {
y: 20,
// 객체를 직접 상속받는다.
// obj => myProto => Object.prototype => null
__proto__: myProto
};
/** 위 코드는 아래와 동일하다.
const obj = Object.create(myProto, {
y: { value: 20, writable: true, enumerable: true, configurable: true }
});
*/
console.log(obj.x, obj.y); // 10 20
console.log(Object.getPrototypeOf(obj) === myProto); // true
19.12 정적 프로퍼티 / 메서드
정적 프로퍼티/메서드는 생성자 함수로 인스턴스를 생성하지 않아도 참조/호출할 수 있는 프로퍼티/메서드를 말한다.
// 생성자 함수
function Person(name) {
this.name = name;
}
// 프로토타입 메서드
Person. prototype.sayHello = function () {
console.log(`Hi! My name is ${this.name}`);
}
// 정적 프로퍼티
Person.staticProp = 'static prop';
// 정적 메서드
Person.staticMethod = function () {
console.log('staticMethod');
}
const me = new Person('Lee');
// 생성자 함수에 추가한 정적 프로퍼티/메서드는 생성자 함수로 참조/호출된다.
Person.staticMethod(); // staticMethod
// 정적 프로퍼티/메서드는 생성자 함수가 생성한 인스턴스로 참조/호출할 수 없다.
// 인스턴스로 참조/호출할 수 있는 프로퍼티/메서드는 프로토타입 체인 상에 존재해야 한다.
me.staticMethod(); // TypeError: me.staticMethod is not a function
Person 생성자 함수는 객체이므로 자신의 프로퍼티/메서드를 소유할 수 있다. Person 생성자 함수 객체가 소유한 프로퍼티/메서드를 정적 프로퍼티/메서드라고 한다. 정적 프로퍼티/메서드는 생성자 함수가 생성한 인스턴스로 참조/호출할 수 없다.
예를 들어, 앞에서 살펴본 Object.create 메서드는 Object 생성자 함수의 정적 메서드고 Object.prototype.hasOwnProperty 메서드는 Object.prototype의 메서드다. 따라서 Object.create 메서드는 인스턴스, 즉 Object 생성자 함수가 생성한 객체로 호출할 수 없다. 하지만 Object.prototype.hasOwnProperty 메서드는 모든 객체의 프로토타입 체인의 종점, 즉 Object.prototype의 메서드이므로 모든 객체가 호출할 수 있다.
function foo() {}
// 프로토타입 메서드
// this를 참조하지 않는 프로토타입 메서드는 정적 메서드로 변경하여도 동일한 효과를 얻을 수 있다.
Foo.prototype.x = function () {
console.log('x');
}
const foo = new Foo();
// 프로토타입 메서드를 호출하려면 인스턴스를 생성해야 한다.
foo.x(); // x
// 정적 메서드
Foo.x = function () {
console.log('x');
};
// 정적 메서드는 인스턴스를 생성하지 않아도 호출할 수 있다.
Foo.x(); // x
19.13 프로퍼티 존재 확인
[in 연산자]
in 연산자는 객체 내에 특정 프로퍼티가 존재하는지 여부를 확인한다. 연산자의 사용법을 알아보자.
/**
* key: 프로퍼티 키를 나타내는 문자열
* object: 객체로 평가되는 표현식
*/
key in object
const person = {
name: 'Lee',
address: 'Seoul'
};
// person 객체에 name 프로퍼티가 존재한다.
console.log('name' in person); // true
// person 객체에 age 프로퍼티가 존재하지 않는다.
console.log('age' in person); // false
in 연산자는 확인 대상 객체(위 예제에서는 person)의 프로퍼티뿐만 아니라 확인 대상 객체가 상속받은 모든 프로토타입의 프로퍼티를 확인하므로 주의가 필요하다.
console.log('toString' in person); // true
위의 예제가 true인 이유는 in 연산자가 person 객체가 속한 프로토타입 체인 상에 존내하는 모든 프로토타입에서 toString 프로퍼티를 검색했기 때문이다. toString은 Object.prototype의 메서드다.
in 연산자 대신 ES6에서 도입된 Reflect.has 메서드를 사용할 수 있다. in 연산자와 동일하게 동작한다.
[Object.prototype.hasOwnProperty 메서드]
Object.prototype.hasOwnProperty 메서드를 사용해도 객체에 특정 프로퍼티가 존재하는지 확인할 수 있다.
console.log(person.hasOwnProperty('name')); // true
console.log(person.hasOwnProperty('age')); // false
Object.prototype.hasOwnProperty 메서드는 인수로 전달받은 프로퍼티 키가 객체 고유의 프로퍼티 키인 경우에만 true를 반환하고 상속받은 프로토타입의 프로퍼티 키인 경우 false를 반환한다.
console.log(person.hasOwnProperty('toString')); // false
19.14 프로퍼티 열기
[for ... in 문]
객체의 모든 프로퍼티를 순회하며 열거하려면 for ... in 문을 사용한다.
for (변수 선언문 in 객체) {...}
const person = {
name: 'Lee',
address: 'Seoul'
};
// for ... in 문의 변수 prop에 person 객체의 프로퍼티 키가 할당된다.
for (const key in person) {
console.log(key + ': ' + person[key])
}
// name: Lee
// address: Seoul
for ... in 문은 in 연산자처럼 순회 대상 객체의 프로퍼티뿐만 아니라 상속받은 프로토타입의 프로퍼티까지 열거한다.
하지만 toString과 같은 Object.prototype의 프로퍼티는 열거되지 않는다. 그 이유는 toString 메서드가 열거할 수 없도록 정의되어 있는 메서드이기 때문이다. 프로퍼티 어트리뷰트 [[Enumerable]]은 프로퍼티의 열거 가능 여부를 나타내는데 Object.prototype.string 프로퍼티는 [[Enumerable]] 값이 false인 것이다.
좀더 정확하게 표현하자만, for ... in 문은 객체의 프로토타입 체인 상에 존재하는 모든 프로토타입의 프로퍼티 중에서 프로퍼티 어트리뷰트 [[Enumerable]]의 값이 true인 프로퍼티를 순회하며 열거한다.
배열에는 for ... in 문을 사용하지 말고 일반적인 for 문이나 for ... of 문 또는 Array.prototype.forEach 메서드를 사용하기를 권장한다.
const arr = [1, 2, 3]
arr.x = 10; // 배열도 객체이므로 프로퍼티를 가질 수 있다.
for (const i in arr) {
// 프로퍼티 x도 출력된다.
console.log(arr[i]); // 1 2 3 10
};
// arr.length는 3이다.
for (let i = 0; i < arr.length; i++) {
console.log(arr[i]) // 1 2 3
};
// forEach 메서드는 요소가 아닌 프로퍼티는 제외한다.
arr.forEach(v => console.log(v)); // 1 2 3
// for ... of는 변수 선언문에서 선언한 변수에 키가 아닌 값을 할당한다.
for (const value of arr) {
console.log(value); // 1 2 3
};
[Object.keys/values/entries 메서드]
for ... in 문은 객체 자신의 고유 프로퍼티뿐만 아니라 상속받은 프로퍼티도 열거한다. 따라서 Object.prototype.hasOwnProperty 메서드를 사용하여 객체 자신의 프로퍼티인지 확인하는 추가 절차가 필요하다.
객체 자신의 고유 프로퍼티만 열거하기 위해서는 for ... in 문을 사용하는 것보다 Object.keys/values/entries 메서드를 사용하는 것을 권장한다.
Object.keys 메서드는 객체 자신의 열거 가능한 프로퍼티 키를 배열로 반환한다.
const person = {
name: 'Lee',
address: 'Seoul',
__proto__: { age: 20 }
};
console.log(Object.keys(person)); // ["name", "address"]
ES8에서 도입된 Object.values 메서드는 객체 자신의 열거 가능한 프로퍼티 값을 배열로 반환한다.
console.log(Object.values(person)); // ["Lee", "Seoul"]
ES8에서 도입된 Object.entries 메서드는 객체 자신의 열거 가능한 프로퍼티 키와 값의 쌍의 배열을 배열에 담아 반환한다.
console.log(Object.entries(person)); // [["name", "Lee"], ["address", "Seoul"]]
Object.entries(person).forEach(([key, value]) => console.log(key, value));
/*
name Lee
address Seoul
*/
'Javascript > Deep Dive' 카테고리의 다른 글
[Deep Dive 정리] 22장. this (0) | 2022.12.30 |
---|---|
[Deep Dive 정리] 21장. 빌트인 객체 (1) | 2022.12.20 |
[Deep Dive 정리] 19장. 프로토타입 - 1 (0) | 2022.12.15 |
[Deep Dive 정리] 20장. strict mode (0) | 2022.12.08 |
[Deep Dive 정리] 18장. 함수와 일급 객체 (0) | 2022.11.25 |